How to Improve Cost Estimates for Advanced CO₂ Capture Systems

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

> Presentation to the 13th Annual CCUS Conference Pittsburgh, Pennsylvania April 29, 2014

Characteristics of Advanced (Pre-Commercial) Capture Systems

- Includes any technology not yet deployed or available for purchase at a commercial scale
 - Current stage of development may range from concept to large pilot or demonstration project
- Process design details still preliminary or incomplete
- Process performance not yet validated at scale, or under a broad range of conditions
- May require new components and/or materials that are not yet manufactured or used commercially

Examples of Pre-Commercial Systems: Everything beyond *Present*

Typical Cost Trend of a New Technology

1

Conventional engineeringeconomic costing

Five Approaches to Cost Estimation for Advanced Systems

- Conventional engineering-economic estimates
- Conventional estimates with uncertainty
- Application of learning (experience) curves
- Expert judgment /elicitations
- Don't say (and don't ask)

Most advanced capture processes use conventional costing methods ...

... but most of these estimates ignore "process contingency cost" guidelines

 Most cost estimates for advanced capture systems assume much smaller contingency costs than guidelines require, e.g.:
 7% (IEAGHG.2011)

- <20% (EPRI. 2011)
- 18% (USDOE, 2010)
- 10% (IECR, 2008)

Cost studies also commonly ignore guidelines for "project contingency cost"

 Project "factor cov or other co detailed du actual site 	Contingen vering the cost of osts that would re esign of a definitiv ." - EPRI TAG	ent • Many Class I-III studies assume <10%	
EPRI Cos Classificat	ot Design Ef	fort Project Continger (% of total pr capital, eng'g office fees, and contingen	ct ency rocess ahome process Conclusion: The total contingeney
Class I (~AACE Class 5/	4) Simplifie	ed 30–50	 Cost for advanced Cost for advanced
Class II (~AACE Class 3)	Prelimina	ary 15–30	 grossly under-estimated in most cost estimates
Class III (~ AACE Class 3	(2) Detaile	d 10–20	(by factors of roughly ~2 to 4)
Class IV (~AACE Class 1)	Finalize	d 5–10)
E.S. Rubin, Carnegi	e Mellon	Source: El	EPRI, 1993

Example of Contingency Costs Impact on Capture Process Cost

Illustrative Increase in Capital Cost and COE

(based on a 2-stage membrane capture system)

	Process + Project Contingency Cost for the CO ₂ capture process alone			
Parameter	20%	50%	100%	
Capture System Capital Cost (\$/kW)	17%	42%	85%	
Capture System COE (\$/MWh)	8%	20%	40%	

E.S. Rubin, Carnegie Mellon

FOAK vs. NOAK

- Early commercial systems are often called First-of-a Kind (FOAK) plants, in contrast to *N*th-of-a-Kind (NOAK) plants for mature widely-deployed systems
- The major difference is usually in the system design (though some cost factors, such as financing costs, also may differ)
- Whichever case is chosen for analysis, contingency costs depend on the <u>current</u> state of technology

E.S. Rubin, Carnegie Mellor

Estimates of Overall Accuracy

Estimate Rating ^(b)		Technology Development Rating ^(b)						
		Α	B Commercial	C Demo	D Pilot	E and F Lab and Idea		
		Mature						
А.	Actual	0	-		_			
В.	Detailed	-5 to +8	-10 to +15	15 to +25	-	-		
C.	Preliminary	-10 to +15	-15 to +20	-20 to +25	-25 to +40	-30 to +60		
D.	Simplified	-15 to +20	-20 to +30	25 to +40	-30 to +50	-30 to +200		
					Sour	e: AACE and EPRI		

Probabilistic Case Study Results: SCPC-CCS (550 MW_{net}) w/ 2-Stage Membrane Capture System

One-Factor Learning (Experience) Curves are the Most Prevalent

• RD&D

10000

<u>Model equation</u>: $C_i = a x_i^{-b}$ 20000-19 Photovoltaics where, $C_i = \text{cost to produce the } i^{\text{th}} \text{ unit}$ 10000 O USA \$ 5000 $x_i =$ cumulative capacity thru period \underline{i} b = learning rate exponent ທີ່ 1000 a = coefficient (constant) 500 Fractional cost reduction for a doubling of cumulative capacity (or production) is defined as the <u>learning rate</u>; $LR = 1 - 2^{b}$ 200 100└ 10 100 1000 10000 Cumulative MW installed

- Most appropriate for projecting future cost of a technology already commercially deployed
- Application to advanced (pre-commercial) processes requires careful consideration of the "starting point" (cost and experience base) for future cost reductions

Cost estimates based on expert elicitations

D E F Expert Table 5 Expected reduction in cost by 2015 relative to current baseline capture system Expected cost reduction based on Parameter "Best estimate" future judgments (%) "Most optimistic" future judgments (%) Capital Cost (S/kWgross)^a Cost of Electricity (S/MWh)^b 6 [-2 to 9] 18 [-8 to 29] 18 [-8 to 30] 16 [7-19] 35 [20-37] 36 [21-38] Cost of CO+ Avoidance (S/tCO+)

Don't say

(and don't ask)

G

.

C

Example of Expert Elicitations to **Estimate Technology Costs**

Elicitations by Nemet et al. of future energy penalty and avoidance cost for seven capture technologies as a function of three policy scenarios

Avoid Cost Estimates for Processes at Early Stages of Development

- This approach uses performance metrics (such as the process energy penalty) to evaluate and screen novel components or process designs in the early stages of development
 - No guarantee, however, that improvements in these performance metrics will necessarily result in lower overall cost for an advanced technology

So where does this leave us ?

Recommendation

Use a combination of the methods above to improve cost estimates for advanced processes:

- At the earliest stages: "Don't say"
- As data-supported process designs emerge, employ conventional methods <u>appropriately</u>
- Characterize uncertainty using accuracy estimates or probabilistic methods to estimate FOAK plant costs
- Use expert judgments as needed for the above
- Employ learning curves (carefully) to estimate NOAK costs as a function of future deployment

A Final Word of Wisdom

"It's tough to make predictions, especially about the future"

- Yogi Berra

E.S. Rubin, Carnegie Mellon

